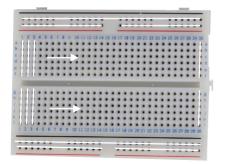


10 erregende und brauchbare Solarversuche.

Mögliche Versuche:

	Die LED brennt solange die Sonne scheint (pag.8) Tolles Gadget als Blickfang (pag.10)
Zirpende Grille	Die Grille zirpt solange die Sonne scheint (pag.12)
	Lädt die Batterien gratis auf (pag.14)
Batterieladegerät mit Lade-Anzeige	
Musikinstrument	
Tester für Fernbedienung	Hören' Sie sich die Fernbedienung an (pag.20)
GartenbeleuchtungDie L	ED schaltet am Abend automatisch ein und am Morgen aus (pag.22)
Bewegungsmelder	Anmeldung von Besuchern (pag.24)
Anzeige-LED 'Alarm eingeschaltet' Die	Batterie lädt tagsüber auf, die LED schrickt Diebe nachts ab (pag.26)

Achtung: Alle Versuche funktionieren mit direktem Sonnenlicht oder einer leistungsstarken Glühlampe von mindestens 60 W. Leuchtstoffröhren, Energiesparlampen, LEDs und Halogenlampen eignen sich nicht.

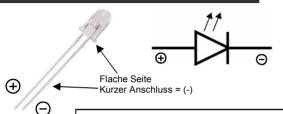




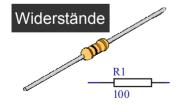
Lieferumfang:

Solarzelle 4 V / 30 mA

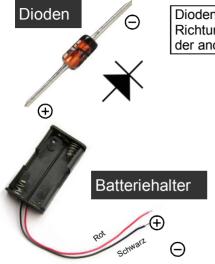
Die Solarzelle setzt Sonnenlicht in Elektrizität um. Diese Elektrizität wird in allen Versuchen verwendet. Je mehr Licht, desto mehr Elektrizität. Richten Sie die schwarze Seite auf die Sonne.


Steckplatine

Alle Versuche werden an der Steckplatine befestigt. Die weißen Linien zeigen wie die Löcher elektrisch angeschlossen sind.


Sehr helle gelbe und rote LEDs

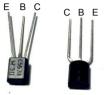
Komponente, um zwei Punkte in einem Kreis mit einander zu verbinden.


Die LEDs erzeugen viel Licht und verbrauchen nur wenig Strom, um zu funktionieren. Beachten Sie die Polarität beim Anschluss! (Velleman # L-5YAC & L-7104LID)

Dieser Bausatz wird mit verschiedenen Widerständen geliefert. Diese Widerstände dienen als Strombegrenzer oder Spannungsteiler. Widerstände haben keine Polarität. Der Wert wird mit Farbringen angezeigt und in Ohm (Ω) ausgedrückt.

Dioden lassen den elektrischen Strom nur in einer Richtung von (+) nach (–) passieren. Der Strom wird in der anderen Richtung blockiert. (Velleman # BAT85)

Zenerdioden sind spezielle Dioden. Diese verhalten sich in Durchlassrichtung wie normale Dioden und lassen den Strom in einer Richtung von (+) nach (-) passieren. In Sperrrichtung werden sie ab einer bestimmten Spannung, der so genannten Sperrspannung oder Durchbruchspannung, niederohmig. Diese finden Sie auf der Diode, z.B. 2V4= 2.4V


Halter für zwei wiederaufladbare AAA-Batterien. Beachten Sie die Polarität. (Velleman # BH421A)

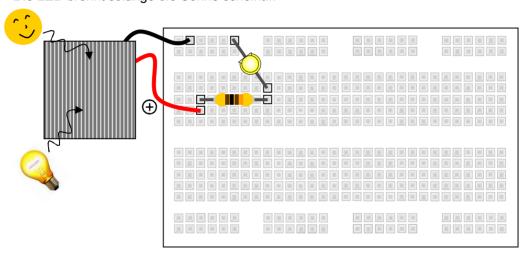
Transistoren

Ein Transistor dient zum Verstärken von Signalen. Mit einem kleinen Steuerstrom kann einen viel größeren geregelt werden. Es gibt 2 Transistortype: NPN und PNP abhängig von der Polarität. Dieser Bausatz enthält 1x BC557 (PNP). Ein Transistor hat 3 Anschlüsse: Basis (B), Emitter (E) und Kollektor (C). (Velleman # BC557B)

Piezoelektrischer Lautsprecher

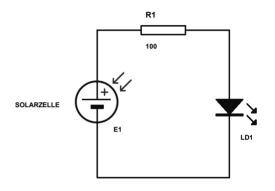
Ein piezoelektrischer Lautsprecher setzt ein elektrisches Signal in Klang um. Polarität spielt keine Rolle. (Velleman # TV1)

Microcontroller (µc)


Ein Microcontroller ist ein programmierbares Bauelement, das mehrere Aufgaben ausführen kann. Der Microcontroller ist programmiert, um Noten abzuspielen oder eine zirpende Grille nachzuahmen. Diese Komponente hat eine Polarität. Beachten Sie die Einkerbung, (Velleman # VKEDU02)

Versuch 1: Solar-LED

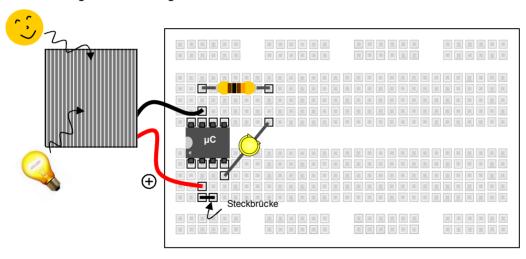
Die LED brennt solange die Sonne scheint...



Benötigte Teile: Solarzelle, 100Ω -Widerstand (Braun-Schwarz-Braun-Gold), gelbe LED

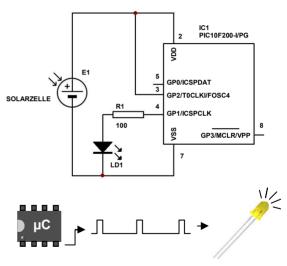
Wie funktioniert es? Um Strom in einem Kreis fließen zu lassen, brauchen Sie einen geschlossenen Kreis. Der Strom fließt von der positiven Pol (+) der Solarzelle durch den Widerstand zum positiven Pol (+) der LED und dann über den negativen Pol (-) der LED zurück zur Solarzelle. An einem sonnigen Tag erzeugt die Solarzelle 3 bis 4 V. Die LED funktioniert aber nur mit 2 V. Widerstand R1 setzt die überflüssige Spannung in Wärme um und schützt die LED vor Beschädigung.

Experiment:


Was geschieht wenn Sie (+) und (-) der LED umkehren? Was geschieht wenn Sie den 100Ω -Widerstand durch einen 47000Ω -Widerstand ersetzen (gelb-Violett-Orange-Gold)?

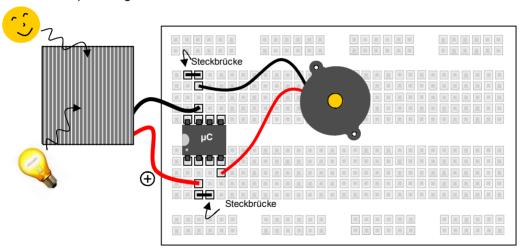
Versuch 2: blinkende LED

Tolles Gadget als Blickfang



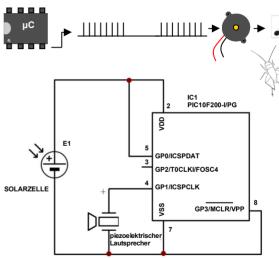
Benötigte Teile: Solarzelle, 100Ω -Widerstand (Braun-schwarz-Braun-Gold), gelbe LED, Microcontroller (μ c).

Wie funktioniert es? Der Controller funktioniert mit 2 bis 5 V. Die Solarplatte liefert diese Spannung. Die Software des Microcontrollers schaltet den Ausgang in einer Schleife ein und aus. Das Signal wird über Anschluss 4 freigegeben. Bei einem ausgeschalteten Ausgang wird der Strom entlang der LED und dem Widerstand fließen, so dass die LED leuchtet.

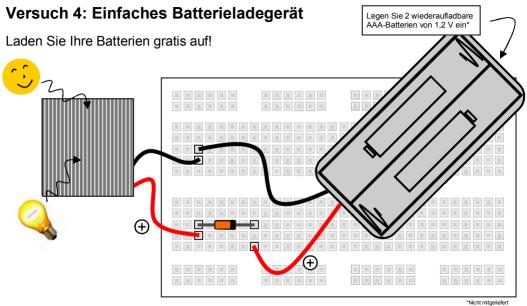


Versuch 3: Zirpende Grille

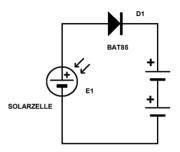
Die Grille zirpt solange die Sonne scheint...



Benötigte Teile: Solarzelle, Microcontroller (μ c), piezoelektrischer Lautsprecher, Steckbrücke


Wie funktioniert es? Der Controller funktioniert mit 2 bis 5 V. Die Solarplatte liefert diese Spannung. Die Software des Microcontrollers ahmt eine zirpende Grille nach. Das Signal wird über Anschluss 4 freigegeben und wird über den piezoelektrischen Lautsprecher in Klang umgesetzt.

Hinweis: Verwenden Sie diesen Versuch als Wecker und wachen Sie bei Sonnenaufgang auf...

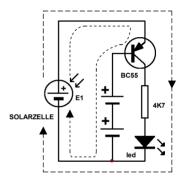


Benötigte Teile: Solarzelle, BAT85-Diode, Batteriehalter für 2 AAA-Batterien, 2 wiederaufladbare AAA-Batterien von 1,2 V

Wie funktioniert es? Solange die Sonnenzelle dem Sonnenlicht ausgesetzt wird, fließt einen Strom der Zelle über die Diode zur Batterie. Der Ladestrom hängt von der Lichtstärke, die die Solarzelle empfängt, ab. Der max. Strom beträgt 30 mA. Die Diode verhindert die Entladung der Batterien (z.B. nachts) weil der Strom nur in einer einzigen Richtung fließen kann.

Wie lange dauert es, um die Batterien völlig zu laden?

Überprüfen Sie die Kapazität der Batterien. Diese Information befindet sich auf den Batterien selber. In der Regel wird dieser Wert in mAh, z.B. 300 mAh angezeigt. Multiplizieren Sie diesen Wert mit 1,2 = 360 mAh. Teilen Sie danach durch 30 mA = 12. Die Batterien sind nach 12 Stunden Sonnenlicht völlig geladen (Faustregel).

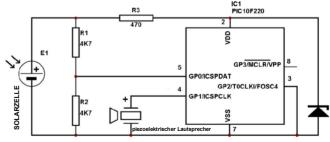


Benötigte Teile: Solarzelle, BC557-Transistor, 4K7-Widerstand (Gelb-Violett-Rot-Gold), gelbe LED, Batteriehalter für 2 AAA-Batterien, 2 wiederaufladbare AAA-Batterien von 1,2 V

Wie funktioniert es? Bei genügend Sonnenlicht fließt ein Strom von (+) der Sonnenzelle über den Emitter/die Basis des Transistors durch die Batterien und so zur Sonnenzelle zurück. Dieser Strom nennen wir den Basisstrom (Punktlinie). In diesem Beispiel lädt der Basisstrom die Batterien auf. Der Strom, der zwischen Emitter und Basis fließt, steuert auch den Transistor wie eine Taste an. Deshalb fließt der Strom der Sonnenzelle über den Emitter/Kollektor und den Widerstand zur LED und zur Sonnenzelle zurück. Dieser Strom sorgt dafür, dass die LED brennt (ununterbrochene Linie).

Für Fortgeschrittene: Die LED erlöscht sobald Sie die Batterien aus dem Halter entfernen. Warum? Beim einfachen Batterieladegerät sorgt die Diode dafür, dass die Batterie bei schwachem Sonnenlicht nicht entlädt. In diesem Kreis wird die Diode entfernt. Warum?

Versuch 6: Musikinstrument Je mehr Licht, desto höher ist die Note Kabel Steckbrücke 4K7 \oplus μC

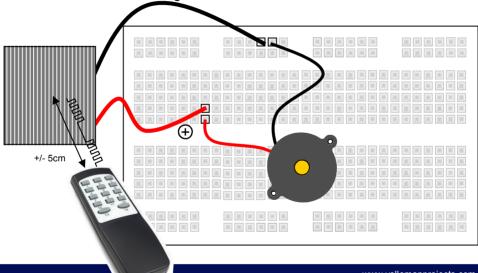


Benötigte Teile: Solarzelle, Microcontroller (μ c), 2x 4K7-Widerstand (Gelb-Violett-Rot-Gold), 470 Ω -Widerstand (Gelb-Violett -Braun-Gold), 2V4-Zenerdiode, piezoelektrischer Lautsprecher, Steckbrücken, Kabel

Wie funktioniert es? Die Solarzelle versorgt den Microcontroller. Das interne Programm funktioniert ab einer Spannung von 2 VDC. Die Zenerdiode und den 470Ω -Widerstand sorgen dafür, dass die Netzspannung für den Controller nie höher als 2,4 V ist, sogar bei vollem Sonnenlicht. Eine zu hohe Spannung kann der Controller unwiderruflich beschädigen. Die zwei Widerstände (4K7) halbieren ebenfalls die Spannung, die die Solarzelle erzeugt. Diese Spannung wird zum analogen Eingang des PIC gesendet. Sogar bei vollem Sonnenlicht ist die Spannung zum Eingang nie höher als 4,5/2=2,25 VDC.

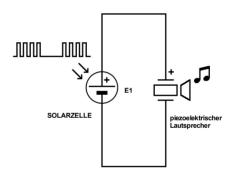
Die interne Software 'misst' die Spannung am Eingang und setzt diese in eine variable Audiofrequenz

(Musiknote) um. Der piezoelektrische Lautsprecher setzt das Signal in Klang Änderung um Bei einer der einfallenden Lichtstärke der Sonnenzelle ändert sich auch die Spannung zum Controllereingang. Die Software nimmt die Änderung wahr und ändert die Tonhöhe ein bisschen Übung können Tonhöhe selber ändern, indem Sie die Hand oder die Taschenlampe über der Solarzelle halten



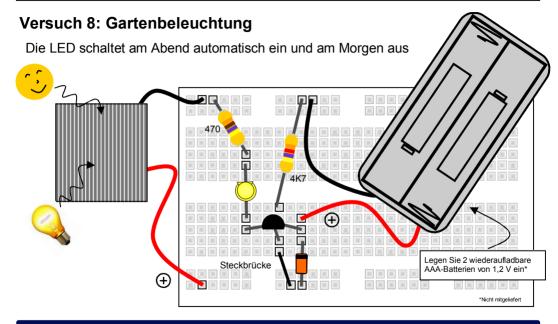
Versuch 7: Tester für Fernbedienung

'Hören' Sie sich die Fernbedienung an



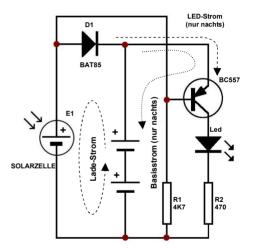
Benötigte Teile: Solarzelle, piezoelektrischer Lautsprecher, IR-Fernbedienung (Option)

Wie funktioniert es? Solarzellen sind empfindlich für IR-Licht, Fällt das IR-Licht auf die Sonnenzelle ein, dann erzeugt die Solarzelle eine Spannung, genauso wie einfallendem Sonnenlicht Drücken der Taste erzeugt die IR-Fernbedienung einen IR-Strahl. Dieser Strahl schaltet sehr schnell ein- und aus. Die Geschwindigkeit, mit der diesen Strahl ein- und ausgeschaltet wird, verschiedet von Taste zu Taste. So erkennt der Empfänger welche Taste Sie gedrückt haben. In diesem Kreis setzt der piezoelektrische Lautsprecher die Einund Ausschaltfreguenz in Klang um.



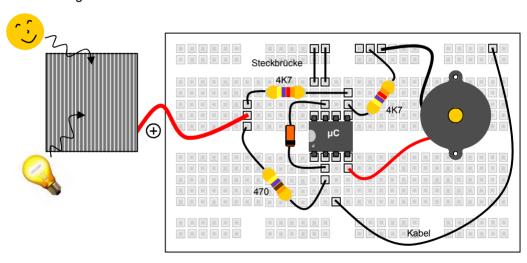
Toller Hinweis ...

'Hören' Sie sich die verschiedenen Lichtquellen wie z.B. LED-Beleuchtung, Leuchtstoffröhre, usw. an.



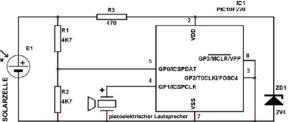
Benötigte Teile: Solarzelle, BC557-Transistor, 4K7-Widerstand (Gelb-Violett-Rot-Gold), 470Ω-Widerstand (Gelb-Violett-Braun-Gold), BAT85-Diode, gelbe LED, Batteriehalter für 2 AAA-Batterien, 2 wiederaufladbare AAA-Batterien von 1,2 V, Steckbrücke

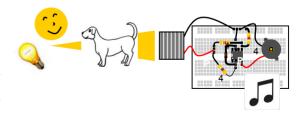
Wie funktioniert es? Bei Sonnenlicht ist die Spannung, die die Solarzelle erzeugt, höher als die Spannung der Batterien. Infolgedessen fließt ein Strom, der die Batterien aufladen wird, von der Solarzelle zu den Batterien Die BAT85-Diode verhindert die Entladung der Batterien bei schwachem Sonnenlicht, Die Basis des Transistors ist über den 4K7-Widerstand mit der Massa (-) verbunden. Der Transistor schaltet ein und ein Strom fließt von den Batterien durch den Transistor. die LED und den 4700-Widerstand zu den Batterien zurück. Die LFD wird brennen. Bemerken. Sie, dass die Basis des Transistors auch mit (+) der Solarzelle verbunden ist. Solange die Sonne scheint, wird die Basis des Transistors hoch genügend gehalten, damit der Transistor nicht einschaltet. Die LED brennt tagsüber nicht.



Versuch 9: Bewegungsmelder

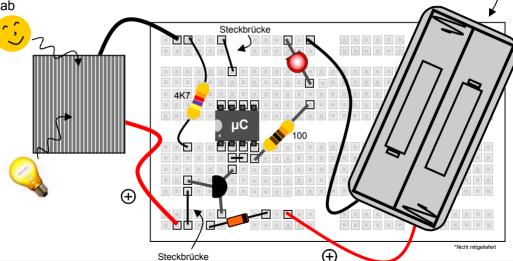
Anmeldung von Besuchern





Benötigte Teile: Solarzelle, Microcontroller (μ c), 2x 4K7-Widerstand (Gelb-Violett-Rot-Gold), 470 Ω -Widerstand (Gelb-Violett-Braun-Gold), 2V4-Zenerdiode, piezoelektrischer Lautsprecher, Kabel

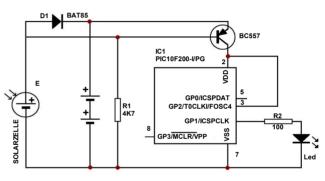
Wie funktioniert es? Die Solarzelle versorgt den Microcontroller. Das interne Programm funktioniert ab einer Spannung von 2 VDC. Zenerdiode und den 4700-Widerstand sorgen dafür dass die Netzspannung für den Controller nie höher als 2.4 V ist, sogar bei vollem Sonnenlicht. Eine zu hohe Spannung kann der Controller unwiderruflich beschädigen. Die zwei Widerstände (4K7) halbieren ebenfalls die Spannung, die die Solarzelle erzeugt. Diese Spannung wird zum analogen Eingang des Controllers gesendet. Sogar bei max. Sonnenlicht, ist die Spannung zum Eingang nie höher als 4.5/2 = 2.25 VDC. Die interne Software 'misst' die Spannung am Eingang und vergleicht diese mit der vorigen Spannung. Bei einem plötzlichen Unterschied z.B. wenn der Strahl unterbrochen wird oder wenn Solarzelle weniger Licht bekommt, erzeugt der piezoelektrische Lautsprecher einen Ton.



Legen Sie 2 wiederaufladbare AAA-Batterien von 1.2 V ein*

Versuch 10: Anzeige-LED 'Alarm eingeschaltet'

Die Batterie lädt tagsüber auf, die LED schrickt Diebe nachts ab



Benötigte Teile: Solarzelle, Microcontroller (μ c), 4K7-Widerstand (Gelb-Violett-Rot-Gold) 100 Ω -Widerstand (Braun-schwarz-braun-Gold), BAT85-Diode, BC557-Transistor, Batteriehalter für 2 AAA-Batterien, 2 wiederaufladbare AAA-Batterien von 1,2 V, Steckbrücken, rote LED

Wie funktioniert es? Bei Sonnenlicht ist die Spannung, die die Solarzelle erzeugt höher als die Spannung der Batterien. Fin Strom fließt also von Sonnenzelle zu den Batterien, die die Batterien aufladen wird Die BAT85-Diode verhindert die Entladung der Batterien bei schwachem Sonnenlicht Die Basis des Transistors ist über den 4K7-Widerstand mit der Massa verbunden. Der Transistor schaltet ein und versorgt den Microcontroller. Der Controller benimmt sich genauso wie bei Versuch 2 und die LED wird brennen.

Bemerken Sie, dass die Basis des Transistors auch mit (+) der Solarzelle verbunden ist. Solange die Sonne scheint, wird die Basis des Transistors hoch genügend gehalten, damit der Transistor nicht einschaltet. Die LED brennt tagsüber nicht.

Modifications and typographical errors reserved © Velleman nv. HEDU02 - 2010 - ED1 - DE (2011.01.20) VELLEMAN NV Legen Heirweg 33, 9890 Gavere Belgium - Europe