
stepper motor
With the K8096 1-channel stepper motor card you can drive 1 stepper motor via USB, and monitor and assign actions if needed to 5 dry contacts
(for example an emergency stop signal, current limit detection).

Search product

Sarch Product

Havigation

- Main page
, products
, Sales outlets
, Support
- Publications
, Jobs
About us

News
HEW HK193 LED CUBE
CubeAnimator sotware avilable for download
herelll herelli loctod an fead more.
vellemant
velleman Projects

Velleman Projects Newsletter

Are you an electronics anthuslastc or smply mterasted in our kts, minhkets, modues and nstrumencs? Subscrie to our Newsletter and recelve every manth the latest news, new products \& updates on velemar ,
rou will recelve an e-mat. Cick on the link h that e-mief to conalminy your subsciption.
Emal: \square Submt

Oo you want to unsubscrbe? cick on the 'unsubscribe' Ink in the footer of the last recalived newiletter from Veleman Projects

Participate our Velleman Projects Forum

Support Forum (EN/FR)

prajects

- Itamanh

With the K8096 1-channel stepper motor card you can drive 1 stepper motor via USB, and monitor and assign actions if needed to 5 dry contacts (for example an emergency stop signal, current limit detection).

There is 1 open collector output that can be switched via USB. Write your own application (.DLL included). Suitable for all positioning applications (for example plotters, printers, valves, automation, etc.).

Features

- capable of driving 1 stepper motor
- suited for bipolar motors
- current of the motor can be adjusted (trimmer)
- over current protection sensing
- onboard switch mode supply
- USB connection: control the motor using your computer
- DLL file supplied to write your own software
- Includes board to wire connections

Specifications

- power output: 750mA continuous, (1A peak)
- wide range AC - power input: $5 \ldots 30 \mathrm{~V}$
- 5 dry-contact inputs
- 1 logic open collector output
- power supply: 10 ... 30VAC
- dimensions: $117 \times 65.5 \times 25 \mathrm{~mm} / 4.6 \times 2.58 \times 0.98$ "

Leds and how to use them

How to Calculate the series resistor:

Example: operate a red led (1.7 V) on a 9 Vdc source
Required led current for full brightness: 5 mA (this can be found in the datasheet of the led)

Required resistor power handling=
voltage over resistor x current passed trough resistor

$(9 \mathrm{~V}-1.7 \mathrm{~V}) \times 0.005 \mathrm{~A}=0.036 \mathrm{~W}$

LEDs in series:

Example: 3 x red led (1.7 V) on 9 V battery Required led current for full brightness: 5 mA (this can be found in the datasheet of the led)

Supply voltage (V) - (number of leds x led voltage (V))
a standard $1 / 4 \mathrm{~W}$ resistor will do the job

assembly

 hints
1. Assembly (Skipping this can lead to troubles!)

Ok, so we have your attention. These hints will help you to make this project successful. Read them carefully.
1.1 Make sure you have the right tools:

- A good quality soldering iron $(25-40 \mathrm{~W})$ with a small tip.
- Wipe it often on a wet sponge or cloth, to keep it clean; then apply solder to the tip, to give it a wet look. This is called 'thinning' and will protect the tip, and enables you to make good connections. When solder rolls off the tip, it needs cleaning.
- Thin raisin-core solder. Do not use any flux or grease.
- A diagonal cutter to trim excess wires. To avoid injury when cutting excess leads, hold the lead so they cannot fly towards the eyes.
- Needle nose pliers, for bending leads, or to hold components in place.
- Small blade and Phillips screwdrivers. A basic range is fine.
() For some projects, a basic multi-meter is required, or might be handy

1.2 Assembly Hints :

- Make sure the skill level matches your experience, to avoid disappointments.
- Follow the instructions carefully. Read and understand the entire step before you perform each operation.
- Perform the assembly in the correct order as stated in this manual
- Position all parts on the PCB (Printed Circuit Board) as shown on the drawings.
- Values on the circuit diagram are subject to changes, the values in this assembly guide are correct*
- Use the check-boxes to mark your progress.
- Please read the included information on safety and customer service
* Typographical inaccuracies excluded. Always look for possible last minute manual updates, indicated as 'NOTE' on a separate leaflet.

1.3 Soldering Hints :

1. Mount the component against the PCB surface and carefully solder the leads

2. Make sure the solder joints are cone-shaped and shiny

3. Trim excess leads as close as possible to the solder joint

REMOVE THEM FROM THE TAPE ONE AT A TIME !

DO NOT BLINDLY FOLLOW THE ORDER OF THE COMPONENTS ONTO THE TAPE. ALWAYS CHECK THEIR VALUE ON THE PARTS LIST!

1 Resistors

\square	R1	10Ω	(1-0-0-B)
\square	R2	$10 \mathrm{~K} \Omega$	(1-0-3-B)
\square	R3	10Kת	(1-0-3-B)
\square	R4	56K Ω	(5-6-3-B)
\square	R5	56K Ω	(5-6-3-B)
\square	R6	1Ω	(1-0-B-B-9)*
\square	R7	1Ω	(1-0-B-B-9)*
\square	R8	1Ω	(1-0-B-B-9)*
\square	R9	1Ω	(1-0-B-B-9)*
\square	R10	$10 \mathrm{~K} \Omega$	($1-0-3-\mathrm{B}$)
\square	R11	10Kת	(1-0-3-B)
\square	R12	10Kת	(1-0-3-B)
\square	R13	10Kת	(1-0-3-B)
\square	R14	10Kת	($1-0-3-B$)
\square	R15	1K2	(1-2-0-1-1)
\square	R16	3K9	(3-9-0-1-1)
\square	R17	1K	(1-0-2-B)
\square	R18	1K	($1-0-2-B$)

* metalfilm resistor !

2 Ceramic Capacitors

3 Diodes

4 Schottky diode

5 IC socket
Watch the popsition of the notch!

6 Trimmer

Adjust trimmer for apropriate output current.

- RV1: 10K

7 Ceramic Capacitors

8 Vertical diodes

9 USB connector

- \% uspa \square SK2

ㅁ	SK4	$: 4 p$	(MOTOR)
-	SK5	$: 2 p$	(IN)
-	SK6	$: 2 p$	(IN)
-	SK7	$: 2 p$	(IN)
-	SK8	$: 2 p$	(IN)
a	SK9	$: 2 p$	(IN)
a	SK10	$: 3 p$	(OUT)

11 Inductor

- L1, L2 : $330 \mu \mathrm{H}$

12 Electrolytic capacitors

	Watch the polarity!	
$-71^{\text {c }}$	- C2	: 100
	$\square \mathrm{C3}$: 33
	$\square \mathrm{C}$: $100 \mu \mathrm{~F}$
	$\square \mathrm{C5}$: $4,7 \mu \mathrm{~F}$
	$\square \mathrm{C} 11$: 100 F

10 Board to wire

$$
e^{2}
$$

13 Terminal Block

\square SK1: 2p (AC power $10-30 \mathrm{~V}$)

14 Quartz crystal

X1: 12MHz
15 Switch regulator

16 Electrolytic capacitors

17 IC

Watch the position of the notch!

- IC1: VK8096 (programmed PIC18F14K50-IP)
- IC2: L6219
- IC3: ULN2003

18 Rubber foots

19. SOFTWARE INSTALIATION

After assembly of the circuit, it is now time to install the software.

Step 1: Download the software on our website or via the QR-code.

Step 4: Select the destination on your PC

Step 2: open the file en select the software.

Step 5: Select the type of installation, we recommend the full installation

Step 3: Select "next" to begin the installation procedure.

Step 6: Select "next" or browse to select a different folder.

Step 7: Select "install" for installing the software.

Step 8: Select the additional tasks you would like, then click "next".

Step 9 : Click "finish" to exit setup.

20. DRIVERINSTALLATION

Connect the USB connector of the K8096 to your PC using an USB cable.
With the first connection, you should install the USB driver of the Stepper Motor Card onto the PC first.

Found New Hardware W	
	Welcome to the Found New Hardware Wizard Thie wizard helpe you install actware for: K8096-1 Chamel USB Stepper Card If your hardware came with an installation CD or floppy disk. insert it now. What do you want the wizard to do? hstal the software sutomatically (Recommended) hstailoma as or speofic location (Advanoned Cick Next to continue.
	(Back Next) Cancel

Step 1: Select "specific location"

Step 4: Click " Finish"

Found New Hardware Wizard	
Please choose your search and installation options.	
() Search for tha beet driver in theee locations. Llee the check boxes below to lint or expard the dsf paths and removable media. The best diver found wil Search removable media floppy, CD-AOM..) holude this loostion in the sercrch: C. Program Fles Weleman Stepper Motor Car Dont esarch. I will choose the diverto install. Choose thie option to eslect the device diverfrom a the driver you chocse wil be the best match for your	arch, which includes local taled. Erowse dowe doce not guarantes that e.
< Back	Nex > Cancel

Step 2: Choose the desired location on your hard drive (the default location is $\mathrm{C}: \mid$ Program FilesIVellemanl stepper motor cards $\backslash .$.).

Installation is succesful

Hardware Installation

!
 The software you are installing for this hardware

K8096 - 1 Channel USB Stepper Card
has not passed Windows Logo testing to verify its compatibilty with Windows XP. (Tell me why this testing is important.)

Continuing your installation of this software may impair or destabilize the correct operation of your system either immediately or in the future. Microsoft strongly recommends that you stop this installation now and contact the hardware vendor for software that has passed Windows Logo testing.
Continue Anyway STOP Installation

Step 3: Click "Continue Anyway"

> The screens can change depending the used Windows

21. CONNECTION DIAGRAM

22. MOTOR DEMO

Start the program by clicking the icon $\square^{\text {a }}$ on your desktop.

Card Type: Select the type of motor card that you want to control*
Port: Fill in the COM port number to which the card is connected.

Disconnect: When closing the program or removing the card, always use Disconnect to guarantee a correct shutdown.

Connect: You can connect to the card when "Card type" and "Port" are filled in.
Steps: Fill in the number of steps the motor needs to execute..
Speed: This indicated the time between each step. A larger number results in a slower running motor. A lower number results in a faster running motor. Min: 1. Max: 255. If the number is too low, it is possible that the motor stops running, depending on the motor's properties.
Stop: Cancel a command.
Torque: By pressing this button, you can lock the rotor. Commands are still possible, but if the motor is not running, the rotor is locked so it cannot rotate by applying an external force. The indicator shows when the rotor is locked or when the motor is running (because the motor then cannot be influenced by external forces).
Inputs: The inputs show the status of each input, activated or not.
Output: This button switches the output on or off. The indicator shows the current setting.
Left: Let the motor turn to the left according to the selected number of steps. This button lights when the motor runs or stops.

Right: Let the motor turn to the right according to the selected number of steps. This button lights when the motor runs or stops.

Demo: This button switches the demo mode on or off. The indicator shows the current setting.When the DEMO modus is active, the inputs serve as motor controls.

Input 1: Turn motor right
Input 2: Turn motor left
Input 3: Torque
Input 4: End contact right, when end contact is tripped the motor will turn left for a periode. Reset the card by activating input 1 en 2 simultaneous.
Input 5: End contact left, when end contact is tripped the motor will turn right for a periode. Reset the card by activating input 1 \& 2 simulataneous.

The new Velleman Projects catalogue is now available. Download your copy here: www.vellemanprojects.eu

